viernes, 11 de marzo de 2011

TRANSMISIÓN DE MICROONDAS

Un sistema en el que se utilizan localmente las m. Constará fundamentalmente de un generador y de un medio de transmisión de la onda hasta la carga; en caso contrario, tendremos necesidad de un sistema emisor y otro receptor, estando el emisor compuesto por los elementos anteriormente citados, donde la carga será una antena emisora, mientras que el receptor será otra antena, medio de transmisión y detector adecuado.

Además de estos elementos existirán otras componentes como pueden ser atenuadores, desfasadores, frecuencimetros, medidores de onda estacionaria, etc.; nosotros nos vamos a circunscribir fundamentalmente a la guía de onda, como elemento fundamental de transmisión a éstas frecuencias.

Como ya se ha citado, la guía de onda es esencia una tubería metálica, a través de la cual se propaga el campo electromagnético sin prácticamente atenuación, dependiendo esta del material de que la misma esté fabricada; así, a una frecuencia determinada, y para una geometría concreta, la atenuación será tanto menor cuanto mejor conductor sea el material. A diferencia de lo que ocurre en el medio libre, en el que el haz de ondas electromagnéticas es mas o menos divergente y sus campos transversales electromagnéticos (ondas TEM, ya citadas), en una guía el campo esta confinado en su interior, evitándose la radiación hacia el exterior, y sus campos ya no pueden ser TEM sino que han de hacer necesariamente del tipo TE (campo electrónico transversal a la dirección de propagación), o bien TM (campo magnético transversal) o bien híbridos, es decir, mezcla de TE y TM.

La configuración de la geometría, tipo de excitación de la guía y frecuencia, ocurriendo además que ciertas configuraciones de campo, denominadas modos, solo son posibles a frecuencias superiores a una determinada, denominada frecuencia de corte, existiendo un modo de propagación de dichos campos, el modo fundamental, que posee la frecuencia de corte mínima. Por debajo de esta frecuencia la guía no propaga la energía electromagnética.

  APLICACIONES DE LAS MICROONDAS

Sin duda podemos decir que el campo mas valioso de aplicación de las m. es el ya mencionado de las comunicaciones, desde las que pudiéramos denominar privadas, pasando por las continentales e intercontinentales, hasta llegar a las extraterrestres.

En este terreno, las m. actúan generalmente como portadoras de información, mediante una modulación o codificación apropiada. En los sistemas de radar, cabe citar desde los empleados en armamento y navegación, hasta los utilizados en sistemas de alarma; estos últimos sistemas suelen también basarse en efecto DOPPLER o en cambios que sufre la razón de onda estacionaria (SWR) de una antena, pudiendo incluso reconocerse la naturaleza del elemento de alarma. Sistema automático de puertas, medida de velocidad de vehículos, etc.

Otro gran campo de aplicación es el que se pudiera denominar científico. En radioastronomía ocurre que las radiaciones extraterrestres con frecuencia comprendidas entre 10 Mhz y 10Ghz pueden atravesar el filtro impuesto por la atmósfera y llegar hasta nosotros.

Entre estas radiaciones están algunas de tipo espectral, como la línea de 1420 OH, y otras de tipo continuo debidas a radiación térmica, emisión giromagnética, sincrotónica, etc. La detección de estas radiaciones permite obtener información de la dinámica y constitución del universo. En el estudio de los materiales (eléctricos, magnéticos, palmas) las m. se pueden utilizar bien para la determinación de parámetros macroscópicos, como son la permitividad eléctrica y la permeabilidad magnética, bien para el estudio directo de la estructura molecular de la materia mediante técnicas espectroscópicas y de resonancia.

En el campo médico y biológicose utilizan las m. Para la observación de cambios fisiológicos significativos de parámetros del sistema circulatorio y respiratorio.

Es imposible hacer una enumeración exhaustiva de aplicaciones que, aparte de las ya citadas, pueden ir desde la mera confección de juguetes hasta el controlar de procesos o funcionamiento de computadores ultra rápidos. Quizá el progreso futuro de las microondas. Esta en el desarrollo cada día mayor, de los dispositivos a estado sólido, en los cuáles se consigue una disminución de precio y tamaño que puede llegar a niveles insospechados; estos sistemas son la combinación de los generadores a semiconductores con las técnicas de circuiteria integrada, fácilmente adaptables a la producción en masa.

Sin embargo no todo son beneficios; un crecimiento incontrolado de la utilización de las m, puede dar lugar a problemas no solo de congestión del espectro, interferencias, etc., sino también de salud humana; este último aspecto no está lo suficientemente estudiado, como se deduce del hecho de que los índices de peligrosidad sean marcadamente diferentes de unos países a otros.

PROPAGACION DE MICROONDAS

Las microondas ocupan una porción del espectro de frecuencias entre 1 y 300 Ghz que corresponde a 10 cm y mm respectivamente, en longitudes de onda. En la práctica son ondas del orden de 1 Ghz a 12 Ghz.

La banda espectral de las microondas de divide en sub-bandas tal como se muestra en la tabla.

   

FRECUENCIA (GHz)

LONGITUD DE ONDA APROXIMADA (Cm)

S

1.5 A 8

10

X

8 A 12.5

3

K

12.5 A 40

1.1

Q

40 A 50

0.8

Sub-bandas en las que se divide la banda espectral de las microondas.

Los sistemas de microondas son usados en enlaces de televisión, en multienlaces telefónicos y general en redes con alta capacidad de canales de información.

Las microondas atraviesan fácilmente la ionosfera y son usadas también en comunicaciones por satélites.

La longitud de onda muy pequeña permite antenas de alta ganancias.

Como el radio de fresnel es relativamente pequeño, la propagación se efectúa como en el espacio libre.

Si hay obstáculos que obstruyan el radio de fresnel, la atenuación es proporcional al obstáculo.

    UTILIZACIÓN DE MICROONDAS EN COMUNICACIONES ESPACIALES

Los satélites artificiales han extendido el alcance de la línea de propagación y han hecho posible la transmisión transoceánica de microondas por su capacidad de admitir anchas bandas de frecuencias. La línea de transmisión puede extenderse por uno de los distintos medios existentes.

El satélite en forma de globo de plástico metalizado exteriormente puede ser empleado como reflector pasivo, en cuyo caso no se necesita equipo alguno en el satélite. Se ha estimado que veinticuatro de tales reflectores pasivos en órbitas polares establecidas al azar alrededor de unos 5000 kilómetros permitirían una transmisión transatlántica que solo se interrumpiría menos de 1% del tiempo.

Como segunda posibilidad, el satélite puede emplearse como un receptor activo en microondas, retransmitiendo la señal que recibe, bien instantáneamente o tras un almacenaje hasta que el este próximo a la estación receptora. En este último caso la capacidad del canal queda limitada.

Con el satélite en una órbita próxima es decir, inferior a 8000 kilómetros, la pérdida de transmisión es moderada, pero las estaciones terrestres deben tener antenas capaces de explotar casi de horizonte a horizonte. Si el satélite se sitúa en una órbita ecuatorial de veinticuatro horas parecerá como si tuviera fijo sobre algún punto del ecuador, darían una cobertura mundial. Con el satélite fijo en su posición respecto a la tierra y estabilizado en su orientación pueden emplearse antenas grandes y relativamente económicas para las estaciones terrestres, pudiéndose emplear en el satélite una antena con una directividad modesta.

Para ver el gráfico seleccione la opción "Descargar" del menú superior

Satélite artificial en órbita circular. r =42000 Km

  desconectado el radio terrestre Rt= 6370 Km se ve que la altura sobre el suelo del satélite será aproximadamente igual a 36000 Km que es la órbita de clark.

Los piases de la zona tropical y templada usan los satélites estacionarios.

Los países en zonas mas alejadas del ecuador son forzados a incluir la órbita en relación con el ecuador y prescindir así del sincronismo perfecto, por que el desplazamiento del satélite es lento con relación a la tierra.

Como el satélite no debe cargar grandes masas, la potencia de su transmisor es reducida y su antena es relativamente pequeña. Sus ondas deben atravesar la ionosfera terrestre, de ahí el uso de microondas para conseguir altísimas ganancias en las antenas terrestres son parabólicas de grandes dimensiones, aproximadamente igual a 30 m de diámetro con ganancia de 60 dB en 2 Ghz.

  Los enlaces se hacen básicamente entre puntos visibles es decir, puntos altos de la topografía.

Cualquiera que sea la magnitud del sistema de microondas, para funcionamiento correcto es necesario que los recorridos entre enlaces tengan una altura libre adecuada para la propagación en toda época del año, tomando en cuenta las variaciones de las condiciones atmosféricas de la región.

Para poder calcular las alturas libres debe conocerse la topografía del terreno, así como la altura y ubicación de los obstáculos que puedan existir en el trayecto.

Antes de hacer mediciones en el terreno puede ser necesario estudiar los planos topográficos de la zona. Por lo general el estudio minucioso de los mapas y de los planos facilita las labores, sobre todo en sistema extensos con gran numero de repetidoras y donde existe una gran variedad de rutas posibles. Por proceso de eliminación y de selección ha de llegarse a la escogencia de la ruta más favorable.

Sobre un mapa de la región en escalas del orden de 1:10000, 1: 100000 o 1: 200000, se escogen estaciones separadas de 10 a 50 Km

  Una vez escogidos los sitios de ubicación propuestos para las torres de las antenas, y habiéndose determinado la elevación del terreno comprendido entre dichos sitios, se prepara un diagrama de perfiles.

En la mayoría de los casos solo es necesario los perfiles de los obstáculos y de sus alrededores, donde pueda obstruirse la línea visual.

Las señales de radiotransmisión en las frecuencias de microondas generalmente se propagan en línea recta en la forma de un haz dirigido de un punto a otro. Sin embargo, el haz puede desviarse o curvarse hacia la tierra por efecto de la refracción de las ondas en la atmósfera. La magnitud de la curvatura se ha tenido en cuenta al calcular el factor K.

Puede emplearse un perfil de trayecto dibujado sin mostrar la curvatura de la tierra, y con el haz de microondas en línea recta entre las dos antenas. Dicho perfil representa el caso en el cual la curvatura del haz es igual a la del terreno y el radio de la tierra es infinito. Esta es una de las condiciones extremas que deben investigarse al estudiar el efecto de las condiciones atmosféricas anormales sobre la propagación de las microondas. Sobre el mismo gráfico se dibujan los recorridos del haz para otros posibles valores de K entre ellos el normal que es 4/3. El trazado de las curvas con diversos valores de K se hace con plantillas normalizadas. Traza el elipsoide de fresnel para verificar si ocurre obturación.

Determinando el perfil del terreno sobre el que se propaga el haz, se estudiará el margen de este con relación al obstáculo mas prominente. Dicho margen hay que compararlo con el radio de la n-esima zona abscisa o, esta dado por la ecuación

Rfn = Ö nhd1d2/d1+d2,m

  donde :

Rfn = Radio de la n-esima zona de fresnel en metros.

h = Longitud de onda en metros.

d1 = Distancia del transmisor al punto considerado en metros.

d2 = Distancia del punto considerado al receptor en metros.

Para ver el gráfico seleccione la opción "Descargar" del menú superior

  A partir del mapa de la región se traza en un papel 4/3 el perfil del terreno a lo largo de la trayectoria de estación a estación.

Ordinariamente, el margen sobre obstáculos se refiere al radio d la primera zona de fresnel; si el cociente correspondiente se lleva en abscisas en le gráfico, en coordenadas se obtendrá la influencia sobre la intensidad de campo. Se tiene las condiciones correspondientes a propagación en el espacio libre cuando al margen sobre obstáculos es 0.6 veces el radio de la primera zona de fresnel. Este es el criterio que se sigue en presencia de obstáculos para determinar la viabilidad de un enlace.

intervalo -3 <p/ Rf <1

  Abscisa: margen sobre obstáculos/radio primera zona de fresnel. B. interpretaciones del margen sobre obstáculos

p >0 y p < o

  La Figura muestra dos interpretaciones existentes para el margen sobre obstáculos p.

  La siguiente es una formula empírica para pérdidas por obstáculo.

Po(dB) = 12 P/ Rf - 10

  la ecuación anterior es válida en el intervalo - 3 < P/Rf < 1

  Hay momentos en que la distribución de la densidad de la atmósfera cambia y la trayectoria se hace mas restante y pasa a sufrir obstrucción, se debe incluir en los cálculos una pérdida adicional de 3 dB.

Poniendo en funcionamiento tal enlace, la transmisión con atmósfera normal no tendrá la perdida de 3 dB, solo surge en momentos desfavorables y ya está incluida en el diseño.

 Luego se calcula la atenuación con la ecuación ( )

Pr / Pt = Gt Ar / 4 TT r²

de la ecuación ( ) se tiene

Ar = Gr h² / 4 TT

Sustituyendo la ecuación ( ) en la ( ) se obtiene la ecuación ( )

Pr / Pt = Gt Gr h² / (4 TT r )²

  donde los parámetros son los mismos que se dieron anteriormente.

  Expresado en dB la ecuación ( ) se tiene la ecuación ( )

  Pr / Pt (dB) = 10 log Pr / Pt = Gt (dB) + Gr (dB) + 20 log h - 20 log r - 22

  Sobre un terreno liso el alcance D de la radiación depende de la altura de la antena h. Entonces:

D (km) = 4 Ö h (m)

  El problema de las reflexiones interferentes es prácticamente inexistente ya que, para las ondas centimétricas todo terreno es áspero y no da buena reflexión según el criterio de Rayleigh.

El único caso peligroso es cuando existe un espejo de aguas mansas como un lago, bahía orio.

ANOMALÍAS DE PROPAGACION EN MICROONDAS

El gradiente del índice de refracción o factor K que corresponde al radio eficaz de la tierra se define como el grado y la dirección de la curvatura que describe el haz de microondas durante su propagación

K = R' / Rt

  Donde Rt es el radio real terrestre y R"es el radio de la curvatura ficticia de la tierra.

  Cualquier variación del índice de refracción provocada por la alteración de las condiciones atmosféricas, se expresa como un cambio del factor K.

En condiciones atmosféricas normales, el valor de K varia desde 1.2 para regiones elevadas y secas (o 4/3 en onzas mediterráneas), hasta 2 o 3 para zonas costeras húmedas.

Cuando K se hace infinito, la tierra aparece ante el haz como perfectamente plana, ya que su curvatura tiene exactamente el mismo valor que la terrestre.

Si el valor de K disminuye a menos de 1, el haz se curva en forma opuesta a la curvatura terrestre. Este efecto puede obstruir parcialmente al trayecto de transmisión, produciéndose así una difracción.

El valor de la curvatura terrestre para los distintos valores de K se calcula mediante la siguiente fórmula

h = d1 d2 / 1.5 K

donde

h = Cambio de la distancia vertical desde una línea horizontal de referencia, en pies,

d1 = Distancia desde un punto hasta uno de los extremos del trayecto, en millas.

d2 = Distancia desde el mismo punto anterior hasta el otro extremo del trayecto, en

millas.

K = Factor del radio eficaz de la tierra.

1ml = 1.61Km.

1 pie = 0.3 m.

  Con excepción del desvanecimiento por efecto de trayectos múltiples, los desvanecimientos son fácilmente superables mediante:

  - Diversidad de espacio.

- Diversidad de frecuencia.

- Diversidad de polarización.

  La alteraciones del valor de K desde 1 hasta infinito ( Rango normal de K), tiene escasa influencia en el nivel de intensidad con que se reciben las señales, cuando el trayecto se ha proyectado en forma adecuada.

Las anomalías de propagación ocurren cuando K es inferior a 1, el trayecto podría quedar obstruido y por lo tanto seria vulnerable a los fuertes desvanecimientos provocados por el efecto de trayectos múltiples.

Cuando K forma un valor negativo, el trayecto podría resultar atrapado entre capas atmosféricas y en consecuencia seria susceptible a sufrir desvanecimiento total.

  DESVANECIMIENTO

El desvanecimiento se debe normalmente a los cambios atmosféricos y a las reflexiones del trayecto de propagación al encontrar superficies terrestres o acuáticas.

La intensidad del desvanecimiento aumenta en general con la frecuencia y la longitud de trayecto.

En caso de transmisión sobre terreno accidentado, el desvanecimiento debido a propagación multrayecto es relativamente independiente del citado margen sobre obstáculo y en casos extremos tiende a aproximarse a la distribución de Rayleigh, es decir, la probabilidad de que el valor instantáneo del campo supere el valor R es :


-R/R0

P (R) = e


En donde: Ro es el valor eficaz.

  En la figura se presentan valores típicos de desvanecimiento para trayectos con suficiente margen sobre obstáculos.

Los tipos de desvanecimiento que influye sobre la contabilidad de la propagación en los sistemas de microondas son selectivos y no selectivos.

 Para ver el gráfico seleccione la opción "Descargar"

Desvanecimiento en el peor mes para trayectos de 40 a 60 Kms con visibilidad y margen sobre obstáculos de 15 a 30 m.

CONFIABILIDAD DE SISTEMAS DE RADIOTRANSMISION POR MICROONDAS

Las normas de seguridad de funcionamiento de los sistemas de microondas han alcanzado gran rigidez. Por ejemplo, se utiliza un 99.98% de confiabilidad general en un sistema patrón de 6000 Km. de longitud, lo que equivale a permitir solo un máximo de 25 segundos de interrupción del año por cada enlace.

Por enlace o radioenlace se entiende el tramo de transmisión directa entre dos estaciones adyacentes, ya sean terminales o repetidoras, de un sistema de microondas. El enlace comprende los equipos correspondientes de las dos estaciones, como así mismo las antenas y el trayecto de propagación entre ambas. De acuerdo con las recomendaciones del CCIR, los enlaces, deben tener una longitud media de 50 Km.

Las empresas industriales que emplean sistemas de telecomunicaciones también hablan de una confiabilidad media del orden de 99.9999%, o sea un máximo de 30 segundos de interrupciones por año, en los sistemas de microondas de largo alcance.

Los cálculos estimados y cómputos de interrupciones del servicio por fallas de propagación, emplean procedimientos parcial o totalmente empíricos. Los resultados de dichos cálculos generalmente se dan como tiempo fuera de servicio (TFS) anual por enlace o porcentaje de confiabilidad por enlace.

Viviana Karin Rojas Cardenas

CI: 19632974

Circuitosde de Altas Frecuencias

www.monografias.com


    

GENERACIÓN DE MICROONDAS

Quizás fue el MAGNETRON, como generador de m. De alta potencia, el dispositivo que dio pie al desarrollo a gran escala de las m., al abrir paso a la utilización de sistemas de radar durante la II Guerra Mundial; sin embargo, fueron KLYSTRONS, los que dieron una mayor versatilidad de utilización de las m., sobre todo en el campo de las comunicaciones, permitiendo además una mayor comprensión de los fenómenos que tiene en lugar los tubos de m. El principio básico de funcionamiento de estos generadores es la modulación de velocidad de un haz electrónico que al atravesar una cavidad resonante, excita en ella oscilaciones electromagnéticas de la frecuencia de m, deseada. El estudio de los KLYSTRONS obligó a un amplio desarrollo desde los fenómenos de carga espacial, la interpretación de la operación de los tubos

Sin embargo, fue el desarrollo de otro tipo de válvulas, las de ONDA PROGRESIVA (TWT, Travelling-Wave Tube); siglas de ésta clase de tubos, las que dieron lugar a una mejor compresión de los fenómenos que tienen lugar en los haces electrónicos, sobre todo en lo que respecta a las ondas electromecánicas, daban lugar a amplificación o generación de m. Para que este acoplamiento sea efectivo es preciso reducir la velocidad de fase de la onda electromagnética lo cual se hace mediante estructuras periódicas de entre las cuales la más utilizada es la hélice; de esta forma es posible mantener una iteración continuada entre la onda electromagnética y el haz electrónico, modulado en velocidad, y consecuentemente en densidad, que va cediendo su energía, digamos cinética, a la onda electromagnética. Posteriormente también se desarrollo el tubo de onda regresiva (BWO< Backward- wave oscillator), en el cual la velocidad de fase de la onda va en dirección opuesta al flujo de energía en el circuito, que ofrecí a, además, una mayor amplitud de sintonía en frecuencia mediante control electrónico.

Los dispositivos anteriores se basan en la conversión de energía de continuidad en la energía de m, mientras que los amplificadores paramétricos (AMPLIFICADOR, 8) utilizan como fuente de energía una de alterna que convierten, por un procedimiento de mezcla, en la de alta frecuencia deseada. En lugar de utilizar como elemento resistivo, utilizan un elemento reactivo, como puede ser un diodo de capacidad variable, y de aquí el bajo nivel de ruido que se puede lograr. Un fundamento análogo tienen los amplificadores cuánticos MASER. Son estos amplificadores de bajo nivel de ruido los que han abierto un gran campo de operación en radioastronomía, así como las intercontinentales vía satélite etc.

Un problema conserniente al desarrollo de las m, lo ha constituido hasta ahora el precio elevado de los generadores; ha sido el decubrimiento de los osciladores a semiconductores el que a abaratado, va camino de hacerlo aun más, dichos generadores, con el cual el campo de aplicaciones de las m.

Está creciendo a un nivel tal que impide predecir las repercusiones futuras, que incluso pueden ser negativas. Estos dispositivos también tienen una concepción diferente a los usuarios de baja frecuencia esencial en que en los de baja frecuencia los electrones del semiconductor son TIBIOS en el sentido que sus energías no difieren grandemente de la red del material, mientras que en los de m. Los electrones son CALIENTES, con energías eléctricas adquiridas de campos eléctricos elevados, que pueden ser muy superiormente a energía de m.

El primero de estos dispositivos se basó en el denominado efecto GUNN que se presenta en semiconductores compuestos, como el arseniuro de galio, material en el fue inicialmente detectado, y desde entonces se han descrito muchos dispositivos, algunos basados en fenómenos bulímicos en el semiconductor, como los gunn, y otros fenómenos que tienen lugar en uniones de semiconductores.

 

Viviana Karin Rojas Cardenas

CI: 19632974

Circuitosde de Altas Frecuencias

wikipedia.com

MODULACION EN MICROONDAS

Los generadores de microondas son generadores críticos en cuanto a la tensión y la corriente de funcionamiento.

Uno de los medios es no actuar sobre el generador o amplificador pero si utilizar un dispositivo diodo pin en la guía de salida, modulada directamente la amplitud de la onda.

Otro medio es utilizar un desfasador de ferrita y modular la onda en fase. En este caso es fácil obtener modulación en frecuencia a través del siguiente proceso:

En una primera etapa, se modula en FM una portadora de baja frecuencia, por ejemplo 70 Mhz.

En una segunda etapa, esta portadora modulada es mezclada con la portadora principal en frecuencia de Ghz, por ejemplo 10 Ghz.

Un filtro de frecuencias deja pasar la frecuencia suma, 10070 Mhz con sus bandas laterales de 3 Mhz y por lo tanto la banda pasante será de 10067 a 10073 Mhz que es la señal final de microondas.

En el receptor se hace la mezcla de esta señal con el oscilador local de 10 Ghz seguido de un filtro que aprovecha la frecuencia de diferencia 70 Mhz la cual es amplificada y después detectada por las técnicas usuales en FM.  

VENTAJAS DE LOS RADIOENLACES DE MICROONDAS COMPARADOS CON LOS SISTEMAS DE LÍNEA METÁLICA

Volumen de inversión generalmente mas reducido.

Instalación más rápida y sencilla.

Conservación generalmente más económica y de actuación rápida.

Puede superarse las irregularidades del terreno.

La regulación solo debe aplicarse al equipo, puesto que las características del medio de transmisión son esencialmente constantes en el ancho de banda de trabajo.

Puede aumentarse la separación entre repetidores, incrementando la altura de las torres.

  DESVENTAJAS DE LOS RADIOENLACES DE MICROONDAS COMPARADOS CON LOS SISTEMAS DE LÍNEA METÁLICA

Explotación restringida a tramos con visibilidad directa para los enlaces.

Necesidad de acceso adecuado a las estaciones repetidoras en las que hay que disponer de energía y acondicionamiento para los equipos y servicios de conservación. Se han hecho ensayos para utilizar generadores autónomos y baterías de células solares.

La segregación, aunque es posible y se realiza, no es tan flexible como en los sistemas por cable

Las condiciones atmosféricas pueden ocasionar desvanecimientos intensos y desviaciones del haz, lo que implica utilizar sistemas de diversidad y equipo auxiliar requerida, supone un importante problema en diseño.  

ESTRUCTURA GENERAL DE UN RADIOENLACE POR MOCROONDAS

  EQUIPOS

Un radioenlace esta constituido por equipos terminales y repetidores intermedios. La función de los repetidores es salvar la falta de visibilidad impuesta por la curvatura terrestre y conseguir así enlaces superiores al horizonte óptico. La distancia entre repetidores se llama vano.

Los repetidores pueden ser:

Activos

Pasivos

En los repetidores pasivos o reflectores.

No hay ganancia

Se limitan a cambiar la dirección del haz radielectrónico.  

PLANES DE FRECUENCIA - ANCHO DE BANDA EN UN RADIOENLACE POR MICROONDAS

En una estación terminal se requieran dos frecuencias por radiocanal.

Frecuencia de emisión

Frecuencia de recepción

Es una estación repetidora que tiene como mínimo una antena por cada dirección, es absolutamente necesario que las frecuencias de emisión y recepción estén suficientemente separadas, debido a:

1.La gran diferencia entre los niveles de las señales emitida y recibida, que puede ser de 60 a 90 dB.

2.La necesidad de evitar los acoples entre ambos sentidos de transmisión.

3.La directividad insuficiente de las antenas sobre todas las ondas métricas.

Por consiguiente en ondas métricas (30-300 Mhz) y decimétricas (300 Mhz - 3 Ghz), conviene utilizar cuatro frecuencias (plan de 4 frecuencias).

En ondas centimétricas, la directividad es mayor y puede emplearse un plan de 2 frecuencias.  

Viviana Karin Rojas Cardenas
CI: 19632974
Circuitosde de Altas Frecuencias

 

DISPOSITIVOS DE MICROONDAS

La ingeniería de microondas/milimétricas tiene que ver con todos aquellos dispositivos, componentes y sistemas que trabajen en el rango frecuencial de 300 MHz a 300 GHz. Debido a tan amplio margen de frecuencias, tales componentes encuentran aplicación en diversos sistemas de comunicación. Ejemplo típico es un enlace de Radiocomunicaciones terrestre a 6 GHz en el cual detrás de las antenas emisora y receptora, hay toda una circuitería capaz de generar, distribuir, modular, amplificar, mezclar, filtrar y detectar la señal. Otros ejemplos lo constituyen los sistemas de comunicación por satélite, los sistemas radar y los sistemas de comunicación móviles, muy en boga en nuestros días.

La tecnología de semiconductores, que proporciona dispositivos activos que operan en el rango de las microondas, junto con la invención de líneas de transmisión planares; ha permitido la realización de tales funciones por circuitos híbridos de microondas.

En estos circuitos, sobre un determinado sustrato se definen las líneas de transmisión necesarias. Elementos pasivos (condensadores, resistencias) y activos (transistores, diodos) son posteriormente incorporados al circuito mediante el uso de pastas adhesivas y técnicas de soldadura. De ahí el nombre de tecnología híbrida de circuitos integrados (HMIC: "Hibrid Microwave Integrated Circuit"). Recientemente, la tecnología monolítica de circuitos de microondas (MMIC), permite el diseño de circuitos/subsistemas capaces de realizar, muchas de las funciones mencionadas anteriormente, en un sólo "chip". Por las ventajas que ofrece ésta tecnología, su aplicación en el diseño de amplificadores para receptores ópticos, constituye un campo activo de investigación y desarrollo.

El diseño de circuitos de microondas en ambas tecnologías, ha exigido un modelado preciso de los diferentes elementos que forman el circuito. De especial importancia son los dispositivos activos (MESFET, HEMT, HBT); pues conocer su comportamiento tanto en pequeña señal como en gran señal (régimen no lineal), es imprescindible para poder predecir la respuesta de un determinado circuito que haga uso de él. El análisis, modelado y simulación de éstos dispositivos, constituye otra de las áreas de trabajo

Materiales en comunicaciones

La utilización de nuevos materiales con altas prestaciones es uno de los pilares del avance espectacular de las tecnologías de la información y comunicaciones. El desarrollo de aplicaciones basadas en sus propiedades requiere un profundo conocimiento previo de éstas. En particular, el descubrimiento de superconductividad en óxidos cerámicos multimetálicos a temperaturas superiores a 77 K (superconductores de alta temperatura, SAT) puede permitir del desarrollo práctico de algunas aplicaciones de la superconductividad económicamente inviables con los superconductores clásicos. Sin embargo, la gran complejidad de los SAT y su naturaleza granular dificultan la puesta en marcha de aplicaciones de los mismos de forma inmediata, a pesar del gran esfuerzo investigador que en este campo se está realizando en los países avanzados. En concreto, en nuestro grupo se ha trabajado en la caracterización experimental y modelado fenomenológico de las propiedades electromagnéticas de superconductores de alta temperatura crítica, incidiendo especialmente en las implicaciones de la granularidad, y en el desarrollo de aplicaciones de los mismos en magnetometría y en cintas para el transporte de corriente sin pérdidas. Por otra parte, en relación con las aplicaciones de la superconductividad clásica, se ha trabajado en la implementación en España de los patrones primarios de tensión (efecto Josephson) y resistencia (efecto Hall cuántico), en colaboración con grupos nacionales y extranjeros especializados en metrología eléctrica básica. Por último, también se ha colaborado con otros grupos de investigación en la caracterización electromagnética de materiales de interés tecnológico, como imanes permanentes o aceros estructurales

TRANSMISIÓN SIN CABLES

Cuando se piensa en comunicación de datos generalmente se piensa en comunicación a través de cable, debido a que la mayoría de nosotros tratamos con este tipo de tecnología en nuestro día a día. Haciendo a un lado las complicadas redes cableadas también tenemos la llamada COMUNICACIÓN INALÁMBRICA muy comúnmente a nuestro alrededor.

La Comunicación de data inalámbrica en la forma de microondas y enlaces de satélites son usados para transferir voz y data a larga distancia. Los canales inalámbricos son utilizados para la comunicación digital cuando no es económicamente conveniente la conexión de dos puntos vía cable; además son ampliamente utilizados para interconectar redes locales (LANS) con sus homologas redes de área amplia (WANS) sobre distancias moderadas y obstáculos como autopistas, lagos, edificios y ríos. Los enlaces vía satélite permiten no solo rebasar obstáculos físicos sino que son capaces de comunicar continentes enteros, barcos, rebasando distancia sumamente grandes.

Los sistemas de satélites y de microondas utilizan frecuencias que están en el rango de los MHz y GHz, usualmente utilizan diferentes frecuencias para evitar interferencias pero comparten algunas bandas de frecuencias.

  COMUNICACIÓN VÍA MICROONDAS

Básicamente un enlace vía microondas consiste en tres componentes fundamentales: El Transmisor, El receptor y El Canal Aéreo. El Transmisor es el responsable de modular una señal digital a la frecuencia utilizada para transmitir, El Canal Aéreo representa un camino abierto entre el transmisor y el receptor, y como es de esperarse el receptor es el encargado de capturar la señal transmitida y llevarla de nuevo a señal digital.

El factor limitante de la propagación de la señal en enlaces microondas es la distancia que se debe cubrir entre el transmisor y el receptor, además esta distancia debe ser libre de obstáculos. Otro aspecto que se debe señalar es que en estos enlaces, el camino entre el receptor y el transmisor debe tener una altura mínima sobre los obstáculos en la vía, para compensar este efecto se utilizan torres para ajustar dichas alturas.

  ANTENAS Y TORRES DE MICROONDAS

La distancia cubierta por enlaces microondas puede ser incrementada por el uso de repetidoras, las cuales amplifican y redireccionan la señal, es importante destacar que los obstáculos de la señal pueden ser salvados a través de reflectores pasivos. Las siguientes figuras muestran como trabaja un repetidor y como se ven los reflectores pasivos.

Para ver el gráfico seleccione la opción "Descargar" del menú superior

La señal de microondas transmitidas es distorsionada y atenuada mientras viaja desde el transmisor hasta el receptor, estas atenuaciones y distorsiones son causadas por una perdida de poder dependiente a la distancia, reflexión y refracción debido a obstáculos y superficies reflectoras, y a pérdidas atmosféricas.

La siguiente es una lista de frecuencias utilizadas por los sistemas de microondas:

Common Carrier Operational Fixed

2.110 2.130 GHz

1.850  1.990 GHz

2.160  2.180 GHz

2.130 2.150 GHz

3.700 4.200 GHz

2.180  2.200 GHz

5.925  6.425 GHz

2.500  2.690 GHz

10.7  11.700 GHz

6.575  6.875 GHz

12.2  12.700 GHz

Debido al uso de las frecuencias antes mencionadas algunas de las ventajas son:

Antenas relativamente pequeñas son efectivas.

A estas frecuencias las ondas de radio se comportan como ondas de luz, por ello la señal puede ser enfocada utilizando antenas parabólicas y antenas de embudo, además pueden ser reflejadas con reflectores pasivos.

Otra ventaja es el ancho de banda, que va de 2 a 24 GHz.

Como todo en la vida, el uso de estas frecuencias también posee desventajas:

Las frecuencias son susceptibles a un fenómeno llamado Disminución de Multicamino (Multipath Fafing), lo que causa profundas disminuciones en el poder de las señales recibidas.

A estas frecuencias las perdidas ambientales se transforman en un factor importante, la absorción de poder causada por la lluvia puede afectar dramáticamente el Performance del canal.

  COMUNICACIÓN POR SATÉLITE

Básicamente, los enlaces satelitales son iguales a los de microondas excepto que uno de los extremos de la conexión se encuentra en el espacio, como se había mencionado un factor limitante para la comunicación microondas es que tiene que existir una línea recta entre los dos puntos pero como la tierra es esférica esta línea se ve limitada en tamaño entonces, colocando sea el receptor o el transmisor en el espacio se cubre un área más grande de superficie.

El siguiente gráfico muestra un diagrama sencillo de un enlace vía satélite, nótese que los términos UPLINK y DOWNLINK aparecen en la figura, el primero se refiere al enlace de la tierra al satélite y la segunda del satélite a la tierra.

Para ver el gráfico seleccione la opción "Descargar" del menú superior

Las comunicaciones vía satélite poseen numerosas ventajas sobre las comunicaciones terrestres, la siguiente es una lista de algunas de estas ventajas:

El costo de un satélite es independiente a la distancia que valla a cubrir.

La comunicación entre dos estaciones terrestres no necesita de un gran número de repetidoras puesto que solo se utiliza un satélite.

Las poblaciones pueden ser cubiertas con una sola señal de satélite, sin tener que preocuparse en gran medida del problema de los obstáculos.

Grandes cantidades de ancho de bandas están disponibles en los circuitos satelitales generando mayores velocidades en la transmisión de voz, data y vídeo sin hacer uso de un costoso enlace telefónico.

Estas ventajas poseen sus contrapartes, alguna de ellas son:

El retardo entre el UPLINK y el DOWNLINK esta alrededor de un cuarto de segundo, o de medio segundo para una señal de eco.

La absorción por la lluvia es proporcional a la frecuencia de la onda.

Conexiones satelitales multiplexadas imponen un retardo que afectan las comunicaciones de voz, por lo cual son generalmente evitadas.

Los satélites de comunicación están frecuentemente ubicados en lo que llamamos Orbitas Geosincronizadas, lo que significa que el satélite circulará la tierra a la misma velocidad en que esta rota lo que lo hace parecer inmóvil desde la tierra. Un a ventaja de esto es que el satélite siempre esta a la disposición para su uso. Un satélite para estar en este tipo de órbitas debe ser posicionado a 13.937,5 Kms. de altura, con lo que es posible cubrir a toda la tierra utilizando solo tres satélites como lo muestra la figura.

Un satélite no puede retransmitir una señal a la misma frecuencia a la que es recibida, si esto ocurriese el satélite interferiría con la señal de la estación terrestre, por esto el satélite tiene que convertir la señal recibida de una frecuencia a otra antes de retransmitirla, para hacer esto lo hacemos con algo llamado "Transponders". La siguiente imagen muestra como es el proceso.

Al igual que los enlaces de microondas las señales transmitidas vía satélites son también degradadas por la distancia y las condiciones atmosféricas.

Otro punto que cabe destacar es que existen satélites que se encargan de regenerar la señal recibida antes de retransmitirla, pero estos solo pueden ser utilizados para señales digitales, mientras que los satélites que no lo hacen pueden trabajar con ambos tipos de señales (Análogas y Digitales).

MICROONDAS

Se denomina así la porción del espectro electromagnético que cubre las frecuencias entre aproximadamente 3 Ghz y 300 Ghz (1 Ghz = 10^9 Hz), que corresponde a la longitud de onda en vacío entre 10 cm. y 1mm.

La propiedad fundamental que caracteriza a este rango de frecuencia es que el rango de ondas correspondientes es comparable con la dimensión físicas de los sistemas de laboratorio; debido a esta peculiaridad, las m. Exigen un tratamiento particular que no es extrapolable de ninguno de los métodos de trabajo utilizados en los márgenes de frecuencias con que limita. Estos dos límites lo constituyen la radiofrecuencia y el infrarrojo lejano. En radiofrecuencia son útiles los conceptos de circuitos con parámetros localizados, debido a que, en general, las longitudes de onda son mucho mayores que las longitudes de los dispositivos, pudiendo así, hablarse de autoinducciones, capacidades, resistencias, etc., debido que no es preciso tener en cuenta la propagación efectiva de la onda en dicho elemento; por el contrario, en las frecuencias superiores a las de m. son aplicables los métodos de tipo ÓPTICO, debido a que las longitudes de onda comienzan a ser despreciables frente a las dimensiones de los dispositivos.

El método de análisis más general y ampliamente utilizado en m. consiste en la utilización del campo electromagnético caracterizado por los vectores (E, B, D y H en presencia de medios materiales), teniendo en cuenta las ecuaciones de MAXWELL (v), que rigen su comportamiento y las condiciones de contorno metálicos son muy frecuentes a estas frecuencias, cabe destacar que, p.ej, el campo E es normal y el campo H es tangencial en las proximidades externas de un conductor. No obstante, en las márgenes externas de las m. se utilizan frecuentemente los métodos de análisis correspondientes al rango contiguo del espectro; así, a frecuencias elevadas m. son útiles los conceptos de RAYO, LENTE, etc., ampliamente utilizados en óptica, sobre todo cuando la propagación es transversal electromagnética, (TEM, E y B perpendiculares entre sí y a la dirección de propagación) en el espacio libre. Por otro lado, a frecuencias bajas de m, colindantes con las radiofrecuencias, es útil la teoría de circuitos con parámetros distribuidos, en la que toma en cuenta la propagación efectiva que va a tener la onda en un elemento cualquiera. Así, un trozo de cable metálico, que en baja frecuencia representa simplemente un corto circuito que sirve para efectuar una conexión entre elementos, dejando equipotenciales los puntos que une, a alta frecuencia un sistema cuya frecuencia, por efecto peculiar, puede no ser despreciable y cuya autoinducción puede causar una impedancia que sea preciso tomar en cuenta. Entonces es preciso representar este cable a través de su impedancia (resistencia y autoinducción) por unidad de longitud.

También en la parte de instrumentación experimental, generación y transmisión de m, estas tienen peculiaridades propias que obligan a utilizar con características diferentes a los de los rangos de frecuencias vecinos. Respecto a limitaciones que impiden su funcionamiento a frecuencias de m., como a continuación esquematizamos.

Las líneas de baja frecuencia son usualmente ABIERTAS, con lo cual, si se intenta utilizar a frecuencias elevadas, automáticamente surgen problemas de radiación de la energía electromagnética; para superar este inconveniente es necesario confirmar los campos electromagnéticos, lo que normalmente se efectúa por medio de contornos metálicos; así, los sistemas de transmisión usuales a m. son, o bien lineas coaxiales, o bien, en general, guías de onda continuadas por conductores abiertos o tuberías. En este sentido es ilustrativo ver la evolución de un circuito resonante LC paralelo de baja frecuencia hacia una cavidad resonante, que es circuito equivalente en m. Como a alta frecuencia las inductancias y capacidades (ELECTROSTÁTICA; INDUCCIÓN ELECTROMAGNÉTICA), cobran gran importancia, por pequeñas que sean, un circuito resonante para frecuencias RELATIVAS ALTAS puede ser sencillamente dos placas paralelas y una espira uniendo ambas placas; es para reducir aún más la inductancia se ponen varias espiras en paralelo, se llega a obtener una región completamente cerrada por paredes conductoras.

La energía electromagnética solo puede almacenarse en una cavidad a frecuencias próximas a las denominadas de resonancia de la misma, las cuales dependen fndamentalmente de su geometría; los campos anteriores penetran solo en una capa delgada de las paredes metálicas siendo el espesor ô, de esta capa, denominada profundidad de penetración, dependiente de la frecuencia y de la conductividad del material que constituya a la cavidad a través de la expresión ô= 2/WUO, donde W,U y son respectivamente la frecuencia de la onda, la permeabilidad magnética y conductividad del material (ELÉCTRICA, CONDUCCIÓN, ELECTROMAGNETISMO) así, para los siguientes metales: aluminio, oro, cobre y plata, los valores de ô a 3Ghz son respectivamente de 1,6, 1,4, 1,2 y 1,4 u. De esta forma es fácil comprender que la energía disipada en las cavidades, si éstas están hechas por buenos conductores, es pequeña, con lo cual las Q, o factores de mérito de las cavidades resonantes Q =2 ƒƒ (energía almacenada)/(energía disipada por ciclo), suelen estar en orden de 10 ^4, pudiendo alcanzar valores mas elevados. Por otra parte el pequeño valor de ô permite fabricar guías de excelente calidad con un simple recubrimiento interior de buen material conductor, (plateado o dorado).

La utilización en m, de las válvulas de vacío convencionales, como amplificadores osciladores, esta limitada, por una parte, por el tiempo de tránsito de los electrones en el interior de la válvula y, por otra, por las inductancias y por las capacidades asociadas al cableado y los electrodos de la misma.

El tiempo de tránsito al hacerce comparable con el período de las oscilaciones, da lugar a que haya un defase entre el campo y las oscilaciones de los electrones; esto implica un consumo de energía que disminuye la impedancia de entrada de la válvula, aunque su rejilla, polarizada negativamente, no capte electrones. Las inductancias y capacidades parásitas causan efectos de resonancia y acople interelectrónico que también conducen a una limitación obvia.

Son muchas las modificaciones sugeridas y utilizadas para superar estos inconvenientes, basándose en los mismos principios de funcionamiento, pero, a frecuencias ya de lleno en el rango de las m., tanto los circuitos de válvulas como los semiconductores trabajan según una concepción completamente diferente a los correspondientes de la baja frecuencia. 

 

Viviana Karin Rojas Cardenas

CI: 19632974

Circuitosde de Altas Frecuencias

www.monografias.com